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Role of the interaction matrix in mean-field spin glass models
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Mean-field models of two-spin Ising spin glasses with interaction matrices taken from ensembles that are
invariant underO(N) transformations are studied. A general study shows that the nature of the spin glass
transition can be deduced from the eigenvalue spectrum of the interaction matrix. A simple replica approach is
derived to carry out the average over theO(N) disorder. The analytic results are confirmed by the extensive
Monte Carlo simulations for large system sizes and by the exact enumeration for small system sizes.
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I. INTRODUCTION

Mean-field models of spin glasses have been extensi
studied over the last 30 years@1#. The first mean-field mode
to be studied thoroughly was the Sherrington-Kirkpatr
~SK! @2# model that exhibits a classical spin glass transit
with a continuous transition in the Parisi overlap matrixQab
at the transition temperatureTc . The full solution to this
problem requires continuous replica symmetry breaking@3#,
indicating an extensive number of pure states in the
temperature phase. Mean-field models with multi- orp-spin
interactions exhibit discontinuous jumps in the Parisi over
matrix Qab at the static transition temperature denoted byTK
for p.2 @4#. However, these systems exhibit a dynami
transition at a temperatureTD.TK indicating the onset of an
extensive number of metastable states preceding the s
transition. These models are of particular interest as the
nario of a dynamical transition followed by a static transiti
is observed in structural glasses@5,6#. For this reason the
above type of behavior is often referred to as a structu
glass transition. Potts-type spin glasses can also exhibit fi
order phase transitions@1#. In this paper we restrict ourselve
to the study of spin glasses with two-spin interactions a
concentrate on the role of the interaction matrix in determ
ing the nature of the phase transitions in the system. Me
field spin glass type models appear in a wide range of c
texts, they are of course the starting points for study
models of finite dimensional spin glasses but also arise
models of neural networks, formulations of optimizatio
problems and simple models for protein folding.

We shall analyze a class of mean-field spin glass mo
with Hamiltonian

H52
1

2 (
i j

Ji j SiSj , ~1!

whereSi areN Ising spins. The interaction matrixJ is con-
structed via the following procedure:

J5O TLO, ~2!

where O is a randomO(N) matrix chosen with the Haa
measure. The matrixL is diagonal with elements indepen
dently chosen from a distributionr(l). The support ofr(l)
is taken to be finite and independent ofN, this ensures the
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existence of the thermodynamic limit. The interest of th
kind of model is that one may average over theO(N) disor-
derO and then examine the nature of the spin glass phas
a function of the eigenvalue distributionr(l). In particular,
we shall show that the way, in whichr(l) vanishes at the
maximal value of its support,lmax, determines whether the
glass transition is a classical spin glass transition or a st
tural glass transition. We show that a finite temperature c
sical spin glass transition occurs if the same model but w
spherically constrained spins@such thatSiP(2`,`) and
( iSi

25N] exhibits a finite temperature phase transitio
Where this is not the case, we study the system, using a
step replica symmetry breaking scheme, to determine the
namical transition temperatureTD and the Kauzmann tem
peratureTK . Numerical simulations are carried out to co
firm our analytical predictions on this class of models. W
carry out both the Monte Carlo simulations and the ex
enumeration calculations. The dynamical transition tempe
ture TD estimated from the simulations agrees well with o
analytic calculations. The exact enumeration carried out
small system sizes confirms the dynamical nature of the t
sition occurring atTD .

Let us briefly recall some well-studied models that f
into the class of spin glass models with interaction mat
given by the form of Eq.~2!. The SK@2# model withJ taken
from the Gaussian ensembleJi j 5Jji and Ji j independent
Gaussian random variables of zero mean and withJ̄i j

2 51/N
can also be written in the form of Eq.~2! with the Wigner
semicircle law@7# density of eigenvalues given by

r~l!5
~42l2!1/2

2p
. ~3!

The squared interaction matrix SK~SIMSK! model studied
recently in Ref.@8# has interaction matrixJ85JTJ, where
the interaction matrixJ is taken from the Gaussian ensemb
described above. HereJ8 is also of the form given by Eq
~2!. The density of eigenvalues here is given by

r~l!5
~42l!1/2

2pl1/2
. ~4!

In fact the SIMSK model, at positive temperatures, is equi
lent to the Hopfield model@9# with N patterns. This mode
©2003 The American Physical Society12-1
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was shown@8# to have different behavior at positive an
negative temperatures. In the positive temperature Hopfi
model @10#, the transition is a classical spin glass transiti
as in the SK model. However, at negative temperature
model has a structural glass transition@8#. We also note that
the minority game, which is an economic model, is clos
related to the negative temperature or antiferromagn
Hopfield model and the same structural glass transition
been remarked@11#. In both the SK and SIMSK models on
knows that the eigenvalues ofJ ~the diagonal elements ofL)
are correlated@7#; however, we will see here that in the the
modynamic limit this correlation seems to be unimporta
One may also consider the more general Hopfield mo
with interaction matrix

Ji j 5 (
m51

p

xi
mxj

m , ~5!

wherep5aN, for a of order 1, is the number of pattern
The case wherexi

m are Gaussian random variables of ze
mean with correlationxi

mxj
n5d i j d

mn/N also falls into the
class of models we are considering, as an arbitrary ortho
nal transformationxm→Oxm gives an element in the sam
statistical ensemble. Here the density of eigenvalues of
matrix J is @12#

r~l!5
@4l2~l112a!2#1/2

2pl
1~12a!d~l! for

a,1, l50, and lP@~12Aa!2,~11Aa!2# ~6!

5
@4l2~l112a!2#1/2

2pl
for a>1,

lP@~Aa21!2,~11Aa!2#. ~7!

Hence, in the casea.1, the density of eigenvalues is zero
the extremes of the support ofr(l). In the casea<1, the
density of eigenvalues is nonzero, and in fact diverges, at
lower band edge but stays zero at the upper band edge
remark that the density of eigenvalues Eq.~7! whena51 is
exactly the same density of eigenvalues as in the SIM
model, as expected from our earlier discussion.

Another example is the random orthogonal model~ROM!
studied by Marinari, Parisi, and Ritort@13#, where

r~l!5ad~l21!1~12a!d~l11!. ~8!

This model was extensively investigated in the casea
51/2, and was shown to exhibit a structural glass transit
The casea51/2 is of particular interest because the hi
temperature series expansion in this case is equivalent to
of a frustrated mean-field model, the sine model, which
no quenched disorder. The ROM ata51/2 shows some
rather interesting behavior, the static transition tempera
TK is extremely close to the temperatureTA where the an-
nealed entropy vanishes. Below the static transition temp
ture the energy is almost constant or equivalently the spe
heat is nearly zero. This implies that the ROM ata51/2 is
04611
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almosta random energy model~REM! at the static level. The
simplest version of the REM@14# is given by considering a
system with microstates having independent energies. T
situation arises by construction in the REM of Derrida whe
there are 2N microstatesn of energiesEn each chosen inde
pendently from a suitable distribution. The REM also aris
when one considers thep→` limit of p-spin interaction
mean-field spin glasses@14,15#. Another example is the cas
of directed polymers on Cayley trees with random bond
site disorder@16#. Although in the directed polymer problem
there are correlations between paths, these correlations
weak and the resulting thermodynamics is also REM-like.
this paper we will show that this REM-like behavior is e
hanced in the ROM model on increasinga abovea51/2.

At a more technical level, the problem of averaging ov
theO(N) disorder was solved by Marinari, Parisi, and Rito
@13# by transposing the results of Itzykson and Zuber@17#
~based on generating function techniques! from the random
matrix theory. For completeness we also give a simple ph
cal ~though not rigorous! rederivation of these averaging re
sults.

II. AVERAGING OVER THE DISORDER

We consider the partition function for a model wit
Gaussian spins with a random interaction matrixJ with den-
sity of eigenvaluesl denoted byr(l). The partition func-
tion at b51 is given by

Z5E )
i

dSiexpS 1

2 (
i j

Ji j SiSj2
m

2 (
i

Si
2D . ~9!

The partition function may be explicitly evaluated, as in t
case of thep52 spherical spin glass model@18#, by passing
to the basis of eigenvalues of matrixJ:

Z5E )
l

dSlexpS 1

2 (
l

lSl
22

m

2 (
l

Sl
2D . ~10!

The Gaussian integrals are easily performed yielding

Z5~2p!N/2)
l

1

~m2l!1/2
, ~11!

thus

ln~Z!5
N

2
ln~2p!2

1

2 (
l

ln~m2l!. ~12!

Averaging over the disorder we obtain

g5
ln~Z!

N
5

1

2
ln~2p!2

1

2E dlr~l!ln~m2l!. ~13!

We will now repeat the same calculation ofg by using the
replica method. One replicates the systemn times, where we
shall consider the limitn→0:
2-2
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Zn5E )
i ,a

dSi
aexpS 1

2(i j Ji j (
a

Si
aSi

a2
m

2 (
i ,a

Si
a2D ,

~14!

wherea51, . . . ,n are replica indices. In a model where th
interaction matrix is chosen to give an extensive free ene
we expect that

expS 1

2 (
i j

Ji j (
a

n

Si
aSj

aD 5expS N

2
Tr G~Q!1n.e.t.D ,

~15!

where Tr indicates the matricial trace over the Parisi or
parameter matrixQab5(1/N)( iSi

aSi
b , and the term n.e.t. de

notes nonextensive terms. The idea of the calculation
follows is to calculateg by using the replica method and the
extractG by comparing the result of this replica calculatio
with the result~13!.

One has therefore, for a genericG,

Z̄n;E )
i ,a

dSi
aexpS N

2
Tr G~Q!2

m

2(
i ,a

Si
a2D . ~16!

We impose the constraintNQab5( iSi
aSi

b with a Fourier rep-
resentation of thed function to obtain

Z̄n;E )
a,b

dLabdQab)
i ,n

dSi
aexpS N

2
Tr G~Q!1

N

2
Tr LQ

2
1

2 (
ab

Lab(
i

Si
aSi

b2
m

2 (
i ,a

Si
a2D

;E )
a,b

dLabdQabexp@NS* ~Q,L!#, ~17!

where the actionS* (Q,L) over the order parametersQ and
L is given by

S* ~Q,L!5 1
2 @Tr G~Q!1Tr QL2Tr ln~L1mI !

1n ln~2p!#. ~18!

The saddle point equations]S* /]Lab50 yield the relation
Q5(L1mI )21, thus giving the result

ln~ Z̄n!

nN
5

1

2
ln~2p!1

1

2
2

1

2n
extrQ@mTr Q2Tr G~Q!

2Tr ln~Q!#, ~19!

where extrQ indicates that the function in the square brack
is evaluated at an extremal or stationary point. For integen
this extremal value is of course the maximum; however,
the limit n→0 it is often the minimal value that should b
taken. The nature of the stationary point chosen depend
the stability analysis of the Hessian matrix at that point.

We now consider what form of ansatz one should ma
for Q in the variational problem contained in Eq.~19!. The
physical nature of the problem makes it clear that the an
should be replica symmetric, the system minimizes its
04611
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ergy on condensing near maximal eigenvalues of the ma
J and there is no frustration. We make the ansatzQ5q0I
1qU, whereUab51 for all a, b. Making use of the fact tha
U25nU, in the limit n→0, we obtain

g5 lim
n→0

ln~ Z̄n!

nN
5

1

2
1

1

2
ln~2p!2

1

2
extrq0 ,qFm~q01q!

2G~q0!2qG8~q0!2 ln~q0!2
q

q0
G . ~20!

The stationarity condition with respect toq yields G8(q0)
2m11/q050, which then gives

g5 1
2 1 1

2 ln~2p!2 1
2 extrq0

@mq02G~q0!2 ln~q0!#. ~21!

If one returns to the expression for the action in Eq.~19!, it is
easy to understand the result in Eq.~21!. The term in square
brackets in Eq.~19! clearly possesses anO(n) invariance,
which is a consequence of theO(N) invariance of the origi-
nal problem before the disorder average is carried out.
action~19! can therefore be written in terms of the eigenv
ues of the matrix ofQab , which by comparison with Eq.~21!
must correspond to the possible values ofq0. We now equate
two different calculations forg, Eq. ~13! and Eq.~21!, to
obtain

minq0
@mq02G~q0!2 ln~q0!#511E dlr~l!ln~m2l!.

~22!

The function

f ~m!511E dlr~l!ln~m2l! ~23!

is clearly concave form.lmax, where lmax is the largest
eigenvalue of the interaction matrixJ. Hence, the right-hand
side of Eq.~22! has the form of a Legendre transform, whic
can now be inverted to give the result

G~z!5extrmFmz2E dlr~l! ln~m2l!G2 ln~z!21,

~24!

or explicitly

G~z!5zm~z!2E dlr~l! ln@m~z!2l#2 ln~z!21,

~25!

wherem(z) is given by the solution to

z5E r~l!dl

m~z!2l
. ~26!

The concavity off (m) furthermore assures the uniqueness
m(z), and hence the annealed calculation~with n51 repli-
cas! is equivalent to the quenched calculation~with n50
replicas!. Hence the extremum taken in Eq.~24! should be a
minimum. Consequently, we obtain the final result
2-3
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G~z!5minmFmz2E dlr~l! ln~m2l!G2 ln~z!21.

~27!

This result can be shown to be identical to that used
Marinari, Parisi, and Ritort@13# who transposed the resul
of Itzykson and Zuber@17# for integrals over unitary matri-
ces to integrals over orthogonal matrices. We recall brie
the prescription of Ref.@13# in the form adapted to the defi
nition of the Hamiltonian used here~there is a difference o
definition by a factor of 2). In the method of Ref.@13# G(z)
is given by

G~z!5E
0

1c~ tz!21

t
dt, ~28!

where

c~z!5E dlr~l!
1

12 j ~z!l
, ~29!

with j (z) given by the solution to the equation

z5 j ~z!E dlr~l!
1

12 j ~z!l
. ~30!

Comparison of Eq.~30! with Eq. ~26! shows thatm(z)
51/j (z). In addition, one sees from Eqs.~29! and ~30! that
c(z)5z/ j (z)5zm(z). When z!1 one has the solution
m(z)'1/z, or j (z)'z from Eq. ~26!. In both prescriptions
this yields ~as it should! G(0)50. One also has thatc(0)
51; thus differentiating Eq.~28! yields

G8~z!5m~z!2
1

z
, ~31!

which is the same equation as obtained on differentiating
result Eq.~27!. The equivalence of the two averaging resu
is thus demonstrated. One of the advantages with the de
tion of the averaging formula derived here is that it has
variational form.

Here we shall give some specific examples ofG(z) for
some well-known models and others we will study in th
paper.

The Sherrington-Kirkpatrick model.The first example to
consider is the Sherrington-Kirkpatrick model, for whic
function G is known by simply averaging over the indepe
dent Gaussian elements ofJ: G(z)5z2/2. We shall show
how to get this result from the formalism developed abov

From Eq.~26!,

z5
1

2pE22

2

dl
A42l2

m~z!2l
5

m~z!2Am~z!224

2
. ~32!

Solving this gives

m~z!5z1
1

z
, ~33!

which givesG(z)5z2/2 by using Eq.~31!.
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The Hopfield model.For all a, Eq. ~26! yields

z5
1

2m
$m2a112@~m2a11!224m#1/2%. ~34!

The solution to this equation turns out to be surprising
simple and is

m52
a

12z
1

1

z
. ~35!

Again integrating Eq.~31! gives

G~z!52a ln~12z!. ~36!

The ROM.In the ROM, Eq.~26! reads

z5
a

m21
1

12a

m11
. ~37!

Solving this yields

m5
16@114z~m1z!#1/2

2z
, ~38!

wherem52a21. The solution ofm should always be such
that m.lmax; hence we take the positive root in the abo
equation. The subsequent integration of Eq.~31! then gives

G~z!5 1
2 „@114z~m1z!#1/21mln$@114z~m1z!#1/2

12z1m%2 ln$@114z~m1z!#1/21112mz%

2m ln~m11!212 ln~2!…. ~39!

Settingm50 yields the symmetric casea51/2 @13#. For this
special case, the partition function may be computed dire
by using theO(N) invariance@19#.

The semisquare law.The semisquare model is one wit
eigenvalues distributed uniformly between21 and 1 and
hencer(l)51/2 for lP@21,1#. In this case the Eq.~26! is

z5
1

2
lnS m11

m21D . ~40!

This leads to

G~z!5 lnS sinh~z!

z D . ~41!

III. THE GENERAL CASE

A. Representations of the Saddle Point Action

We repeat the precedent calculation for an Ising s
Hamiltonian of form given in Eq.~1!. Using the same tech
nique as the previous section, after a little algebra, one fi

ln~ Z̄n!

N
5extrQ,LS** @Q,L#, ~42!

where
2-4
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S** @Q,L#5
1

2
Tr G~bQ!1

1

2
Tr QL

1 lnFTrSa
expS 2

1

2 (
a,b

LabSaSbD G . ~43!

This is the general form used in Ref.@13#. However, as the
form of G is in general rather complicated, one may use
variational representation of Eq.~27!, introducing an addi-
tional order parameter matrixR to write

ln~ Z̄n!

N
5extrQ,L,RS* @Q,L,R#, ~44!

where

S* @Q,L,R#5
b

2
Tr QR2

1

2
Tr E dlr~l!ln~R2l!

2
1

2
Tr ln~bQ!2

n

2
1

1

2
Tr QL

1 lnFTrSa
expS 2

1

2 (
a,b

LabSaSbD G .
~45!

The saddle point equation]S* /]Q50 yields the relation
L5Q212bR, and this leads to

ln~ Z̄n!

N
5extrQ,RS@Q,R#, ~46!

where

S@Q,R#52
1

2
TrE dlr~l!ln~R2l!2

1

2
Tr ln~bQ!

1 lnFTrSa
expS 1

2 (
a,b

~bRab2@Q#ab
21!SaSbD G .

~47!

The saddle point equations for this action yield

Qcd5

TrSa
ScSdexpF1

2 (
a,b

~bRab2@Q#ab
21!SaSbG

TrSa
expF1

2 (
a,b

~bRab2@Q#ab
21!SaSbG , ~48!

and

bQ5E dlr~l!~R2l!21. ~49!

The problem may also be formulated purely in terms
the Parisi overlap matrixQ. In this version one has

ln~ Z̄n!

N
5extrQS@Q#, ~50!
04611
e

f

where

S@Q#5
1

2
Tr G~bQ!2

b

2
Tr QG8~bQ!

1 lnFTrSa
expS b

2 (
a,b

@G8~bQ!#abSaSbD G . ~51!

Here we can show that if one uses the density of eigenva
for the SK, SIMSK, or Hopfield model in the above formu
~51!, the saddle point action for the corresponding mode
reproduced. Any effects due to correlations between the
genvalues presumably only show up as finite size corr
tions.

B. The Replica Symmetric and Annealed Cases

We start by computing the annealed free energy, whic
presumably the correct free energy at sufficiently high te
peratures. In the annealed case, that is,n51, the free energy
is given by

f ann52
ln~2!

b
2

1

2b
G~b! ~52!

and the entropy is given by

sann5 ln~2!1
1

2
G~b!2

b

2
G8~b!. ~53!

In the replica symmetric~RS! ansatzQab5(12q)dab1q,
where d is the Kronecker symbol, and the action reads
ordern,

S@Q#5nSRS@q#5
1

2
@G„b~12q!…1bqG8„b~12q!…

2b2q~12q!G9„b~12q!…#

1E
2`

` dz

A2p
e2z2/2ln$2 cosh@bzAqG9„b~12q!…#%

~54!

and the derivative ofSRS@q# with respect toq is

dSRS@q#

dq
5

b2

2
@G9„b~12q!…2bqG-„b~12q!…#Fq

2E
2`

` dz

A2p
e2z2/2tanh2@bzAqG9„b~12q!…#G .

~55!

There are two replica symmetric saddle point equations:

G9„b~12q!…5bqG-„b~12q!… ~56!

and
2-5
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q5E
2`

` dz

A2p
e2z2/2tanh2@bzAqG9„b~12q!…#. ~57!

The first solution is unphysical@8#, and thusq is given by
Eq. ~57!. If we look for a second-order phase transition, e
panding nearq50, we find that a continuous nonzero sol
tion can appear atTc51/bc , wherebc is determined by

bc
2G9~bc!51. ~58!

This general equation was also derived in Ref.@13#. Now
using Eq.~31!, Eq. ~58! becomes

E dl
r~l!

~mc2l!2
5` ~59!

and hencemc5lmax, wherelmax is the largest eigenvalue o
J. We thus find thatTc is given by

1

Tc
5E dl

r~l!

lmax2l
. ~60!

It is straightforward to see that the possibility of having
finite temperature phase transition in this Ising spin mo
depends on the existence of a finite temperature phase
sition in the corresponding spherical model. In this case
critical temperatureTc of the two transitions are the sam
Equation ~60! determining Tc shows that if r(l)/(lmax
2l) is integrable over the support ofr(l) thenTc is finite,
if it is not integrable thenTc50. Hence, if r(l);(lmax
2l)g nearlmax thenTc50, for g<0 but a finite tempera-
ture second-order phase transition is possible forg.0. From
Eq. ~59! we also see that ifg.2 then the phase transitio
can be continuous but of higher than second order.

The above results can be further verified in a more gen
than replica symmetric context by carrying out a Land
expansion. WritingQab5dab1vab , the lowest-order expan
sion aroundv50 of Eq. ~51! is

S@Q#5
n

2
G~b!1

b2

2
G9~b!@b2G9~b!21#Tr v21o~v2!.

~61!

The nature of the phase transition depends on the coeffic
of Tr v2 in the expansion above. This coefficient only va
ishes atb2G9(b)51, which agrees with the previous defi
nition of Tc . If TcÞ0, then a second-order phase transiti
occurs atTc , and the subsequent replica symmetry break
is determined in terms of higher order inv in the expansion
Eq. ~61!. We note that the breaking of theO(n) symmetry in
replica space should favor replica symmetry breaking@3#.

In addition if we look at the Thouless-Anderson-Palm
~TAP! equations@20# in an external field, the linear expan
sion in the paramagnetic phase gives the following equat
for the magnetizationsmi :

mi5bhi1b(
i j

Ji j mj2bG8~b!mi . ~62!
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Hence, the staggered susceptibility in the direction of an
genvaluel is

xl5
b

12bl1bG8~b!
~63!

5
1

m2l
, ~64!

from Eq. ~31!. Hence, the staggered susceptibility for t
maximum eigenvaluelmax diverges at the critical tempera
ture, as in the SK model@2#.

We may now classify the phase transitions in the vario
models discussed here simply by examining the behavio
the density of eigenvaluesr(l) at its upper band edge.

~1! SK model@Eq. ~3!#: g51/2—second order.
~2! Hopfield b.0 @Eqs. ~6! and ~7!#: g51/2—second

order.
~3! Hopfield b,0, a.1 @Eq. ~7!#: g51/2—second or-

der.
~4! Hopfield b,0, a,1 @Eq. ~6!#: d function at

lmax—first order.
~5! SIMSK ~Hopfield at a51) b,0 @Eq. ~4!#: g5

21/2—first order.
~6! ROM @Eq. ~8!#: d function atlmax—first order.
~7! Semisquare model:g50—first order.

C. One Step Replica Symmetry Breaking

In a variety of models such as the SK model, the Hopfi
model, or the ROM, either the RS entropy or the annea
one is negative at low temperature. In this case, replica s
metry has to be broken. Indeed, the glass transition may
attributed to the existence of an extensive number of p
states. The complexity of these pure states can be comp
within the following one step replica symmetry breakin
~1RSB! ansatz@5,21#: Q is a block diagonal matrix, where
the blocks have sizem3m and m<1. Inside the blocks
Qab5(12q)dab1q, then the action reduces to

S@q,m#5
m21

2m
G„b~12q!…1

1

2m
G„b~12q1qm!…2

l

2
~1

2q1mq!1
1

m
lnS E

2`

` dz

A2p
e2z2/2coshm~Alz!D ,

~65!

where

l5
b

m
@G8„b~12q1mq!…2G8„b~12q!…#. ~66!

ExpandingS@q,m# aroundm51 gives

S@q,m#52b f ann1~m21!V~q!1o„~12m!2
…. ~67!

The extremum of the effective potentialV(q) at q50 con-
tributes to the paramagnetic value2b f ann , whereas a local
2-6
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minimum at nonzeroq corresponds to the entropy of pu
states. The potential is easily computed,

V~q!5
]S@q,m#

]m U
m51

~68!

’

52
1

2
@G„b~12q!…2G~b!1bqG8~b!#1

11q

2
l

2e2l/2 E
2`

` dz

A2p
e2z2/2cosh~Alz!ln cosh~Alz!,

~69!

where

l5b@G8~b!2G8„b~12q!…#. ~70!

This is exactly the expression for the annealed complexity
the solutions of the TAP equations found in Ref.@20#.

The dynamical transition occurs when the number of p
states becomes extensive. The dynamical transition temp
ture TD and the dynamical overlapqD are determined from
the equationsV9(qD)5V8(qD)50 (qDÞ0). The static tran-
sition occurs when the number of pure states is no lon
extensive, so the static transition temperatureTK and the
static overlapqS are determined from the equationsV(qS)
5V8(qS)50 (qSÞ0).

The first derivative of the potential is

V8~q!5
b2

2
G9„b~12q!…@q2G~q!#, ~71!

where

G~q!5e2l/2E
2`

` dz

A2p
e2z2/2tanh2~Alz!cosh~Alz!

~72!

and the second derivative is

V9~q!5
b2

2
G9„b~12q!…@12G8~q!#

2
b3

2
G-„b~12q!…@q2G~q!#. ~73!

After some algebra, one finds forq* such thatV8(q* )50,

V9~q* !5
b2

2
G9„b~12q* !…S 12b2G9„b~12q* !…e2l/2

3E
2`

` dz

A2p
e2z2/2

1

cosh3~Alz!
D . ~74!

The paramagnetic solutionq50 is always a stationary poin
of V(q) and the second derivative ofV is
04611
f
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V9~0!5
b2

2
G9~b!@12b2G9~b!#. ~75!

Again, this quantity may have several possible behavio
depending onbc .

~1! bc5`. One sees from Eq.~26! that for all tempera-
tures b2G9(b),1, and thenV9(0).0. Hence, either the
only local minimum of the effective potential is atq50, or
there is another solution appearing atTD.0, where the sys-
tem undergoes a dynamical transition, with a nonzero
namical overlapqD .

~2! bc51/Tc,`. From Eq.~26!, b2G9(b),1 if b,bc
and b2G9(b)>1 if b>bc . Here, the stationary pointq
50 becomes unstable atT5Tc , so there is no dynamica
transition belowTc ~one cannot exclude a dynamical trans
tion at TDÞ0, but as expectedTc<TD). We remark from
Eq. ~74! that if G8 is convex, then there is no discontinuou
dynamical transition and the system undergoes a class
spin glass transition atTc .

This 1RSB calculation can be done for the random
thogonal model, where a discontinuous dynamical transit
is expected. The dynamical and static temperaturesTD and
TK arising in the random orthogonal model as a function
a are shown in Fig. 1. Also shown is the temperatureTA at
which the annealed entropy disappears. It was noted
Marinari, Parisi, and Ritort that for the ROM ata51/2 TA is
very close toTK . Indeed we see that for alla>1/2 this is the
case. This means that the statics of these models foa
.1/2 is very close to that of the REM. This analogy is fu
ther supported by the values ofq in the one step solution
which are already very close to 1 atTK .

IV. NUMERICAL SIMULATIONS

In this section we describe the numerical simulations c
ried out to test our theoretical results. We shall concentr
on the case of the random orthogonal model at different v

FIG. 1. Various temperatures arising in the random orthogo
model as a function ofa.
2-7
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ues ofa and the semisquare model, which are systems
hibiting the structural glass transition.

The numerical generation of the interaction matricesJi j is
carried out as follows. We take a random orthonormal ba
of x(k) 1<k<N of RN and constructJi j via

Ji j 5(
k

lkxi
(k)xj

(k) , ~76!

where, in the case of a continuous density of eigenvalu
r(l), eachlk is drawn independently from the distributio
with probability densityr(l). In the case of the ROM, in
order to reduce sample to sample fluctuations,aN eigenval-
ues 11 and N(12a) eigenvalues21 are randomly as-
signed to each eigenvector. As mentioned above, this ha
form of a Hopfield model@9# but where the patternsx(k) are
strictly orthogonal, and not simply statistically orthogon
and where each patternx(k) is weighted bylk . The construc-
tion of a statisticallyO(N) invariant basisx(k) is carried out
by choosing forx(k) the ~normalized! eigenvectors of the
statistically O(N) invariant symmetric Gaussian matrixK
with Ki j 5s i j /AN, eachs i j being Gaussian of mean 0 an
variance 1.

We have carried out two types of numerical simulatio
The Monte Carlo simulations on the systems of sizeN
5200 were performed, in order to validate the high tempe
ture predictions of the theory. Below the dynamical transit
temperatureTD , it is impracticable to equilibrate the syste
for these large system sizes; however, one may estimate
value of TD by examining at which temperature the me
sured results differ from the annealed calculation. The res
of our calculations are compatible with these estimations
each of Figs. 2–4 is shown the dynamically measured en
per spin for a system of size 200. The corresponding coo
rate, the number of samples, and the number of runs
shown in Table I. The equilibration time constituted 90%

FIG. 2. Energies per spin for the ROM witha50.6: the Monte
Carlo simulations for the systems of sizeN5200 ~squares! andN
530 ~circles!, the exact enumeration forN530 ~long dashed line!,
annealed~solid line!. Also shown are the calculated values ofTD

~vertical dotted line! andTK ~vertical dashed line!.
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the time spent at each temperature and the measurem
were made during the last 10%. Also shown in Figs. 2–4
the calculated value ofTD ~vertical dotted line! and the value
of TK ~vertical dashed line!. We see that for the system size
studied here, the departure from the annealed energy an
onset of the characteristic, almost flat energy plateau, ar
good agreement with the calculated value ofTD .

For the system sizes ofN530 spins, the energy can b
calculated by exact enumeration over all the microstates.
results for the energy can be compared with those of dyna

FIG. 3. Energies per spin for the ROM witha50.8: the Monte
Carlo simulations for the systems of sizeN5200 ~squares! andN
530 ~circles!, the exact enumeration forN530 ~long dashed line!,
annealed~solid line!. Also shown are the calculated values ofTD

~vertical dotted line! and TK ~vertical dashed line!. In the inset is
shown the low energy behavior of the annealed energy and
energy calculated by the exact enumeration.

FIG. 4. Energies per spin for the semisquare model: the Mo
Carlo simulations for the systems of sizeN5200 ~squares! andN
530 ~circles!, the exact enumeration forN530 ~long dashed line!,
annealed~solid line!. Also shown are the calculated values ofTD

~vertical dotted line! andTK ~vertical dashed line!.
2-8
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TABLE I. Parameters used in different Monte Carlo simulations.

Semisquare ROMa50.6 ROMa50.8
N530 N5200 N530 N5200 N530 N5200

Number of samples 40 40 40 40 40 40
Number of runs 200 20 200 20 200 20
Cooling rate~MCS! 53105 53105 106 106 23106 23106
dy
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cal simulations and the theoretical predictions. For the
namical simulations on the systems of sizeN530, the cool-
ing rate, the number of samples, and the number of runs
also indicated in Table I. The exact enumeration avera
were taken over at least 20 samples. Also shown in Fig
–4 are the results of these simulations. We see that the
sults of the exact enumeration, even for the small sys
sizes used here, are in excellent agreement with the the
ical predictions. For the system witha50.6 ~Fig. 2!, we see
that the plateau in the static energy is compatible with
calculated value ofTK but the Monte Carlo simulation with
N530 is clearly out of equilibrium at temperatures belo
TD . In Fig. 3 for a50.8 the theoretical prediction is tha
TK!TD . We see that the exact enumeration result is in p
fect agreement with the annealed energy down to ener
aroundTK ~shown enlarged in the figure inset!. The Monte
Carlo results for the systems of sizeN530 are, however, still
clearly out of equilibrium. In Fig. 4 are shown the results f
the semisquare model. We see that the dynamics and
Kauzmann temperatures are very close; however, here
results of the Monte Carlo simulations and the exact e
meration for the systems of sizeN530 are much closer, the
dynamically measured energies are, however, still sligh
lower than the static ones measured by exact enumerati

V. CONCLUSIONS

In this paper we have examined the statics of a clas
fully connected generalized random orthogonal models.
have shown how the average over theO(N) disorder can be
carried out, using a simple replica method recovering
-

,

tte

04611
-

re
es
2

re-
m
et-

e

r-
es

he
he
-

y
.

of
e

e

results of the random matrix theory. This method has
useful property of giving a variational form for the resu
Depending on the behavior of the density of eigenvalues
the band edges, we have seen that one either obtains a
sical spin glass transition or a structural glass transition. O
results suggest that in the thermodynamic limit only the d
sity of eigenvalues is important for the statics of these m
els. This classification should be useful in a wide range
models. It was noted that the ROM with a bimodal distrib
tion of eigenvalues behaves like a random energy model
large values ofa, in agreement with previous studies whe
it was shown already to have very close to REM-like beh
ior at a51/2.

We have carried out numerical simulations on the gen
alized form of the original ROM model, which support ou
analytical calculations. Simulating small system sizes via
Monte Carlo dynamics and by the exact enumeration c
firms the dynamical nature of the transition occurring atTD .
Further questions arising form this study will be interesti
to address. One can look at the number of metastable s
in such systems to better understand the geometric rea
leading to the glassy behavior@22#. Also the fact that even
small system sizes stay out of equilibrium on numerica
accessible time scales and the fact that they can be studie
exact enumeration means that one may study finite size
fects and hence activated processes on the dynamical tr
tion as proposed in Ref.@23#. The formulation of the saddle
point action in Eq.~47! also allows one to study the decom
position of the Parisi overlap matrixQ on the basis of eigen
vectors of the problem, which may give a more geome
picture of the nature of the glassy phase of these model
v.
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