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Role of the interaction matrix in mean-field spin glass models
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Mean-field models of two-spin Ising spin glasses with interaction matrices taken from ensembles that are
invariant underO(N) transformations are studied. A general study shows that the nature of the spin glass
transition can be deduced from the eigenvalue spectrum of the interaction matrix. A simple replica approach is
derived to carry out the average over ¢éN) disorder. The analytic results are confirmed by the extensive
Monte Carlo simulations for large system sizes and by the exact enumeration for small system sizes.
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I. INTRODUCTION existence of the thermodynamic limit. The interest of this
kind of model is that one may average over @EN) disor-
Mean-field models of spin glasses have been extensivelgter O and then examine the nature of the spin glass phase as
studied over the last 30 yedrE|. The first mean-field model a function of the eigenvalue distributigi{\). In particular,
to be studied thoroughly was the Sherrington-Kirkpatrickwe shall show that the way, in whigh(\) vanishes at the
(SK) [2] model that exhibits a classical spin glass transitionmaximal value of its suppor ., determines whether the
with a continuous transition in the Parisi overlap mat@iy,  glass transition is a classical spin glass transition or a struc-
at the transition temperaturg.. The full solution to this tural glass transition. We show that a finite temperature clas-
problem requires continuous replica symmetry breakBlg  sical spin glass transition occurs if the same model but with
indicating an extensive number of pure states in the lowspherically constrained spifsuch thatS;e (—«,~) and
temperature phase. Mean-field models with multipespin ~ 3,S?=N] exhibits a finite temperature phase transition.
interactions exhibit discontinuous jumps in the Parisi overlapwhere this is not the case, we study the system, using a one
matrix Q,y, at the static transition temperature denoted’Ry  step replica symmetry breaking scheme, to determine the dy-
for p>2 [4]. However, these systems exhibit a dynamicalnamical transition temperatufg, and the Kauzmann tem-
transition at a temperatuiig, > Ty indicating the onset of an peratureT, . Numerical simulations are carried out to con-
extensive number of metastable states preceding the stafiem our analytical predictions on this class of models. We
transition. These models are of particular interest as the scearry out both the Monte Carlo simulations and the exact
nario of a dynamical transition followed by a static transition enumeration calculations. The dynamical transition tempera-
is observed in structural glassgs,6]. For this reason the ture T, estimated from the simulations agrees well with our
above type of behavior is often referred to as a structurahnalytic calculations. The exact enumeration carried out on
glass transition. Potts-type spin glasses can also exhibit firssmall system sizes confirms the dynamical nature of the tran-
order phase transitio4]. In this paper we restrict ourselves sition occurring afl .
to the study of spin glasses with two-spin interactions and Let us briefly recall some well-studied models that fall
concentrate on the role of the interaction matrix in determindinto the class of spin glass models with interaction matrix
ing the nature of the phase transitions in the system. Meargiven by the form of Eq(2). The SK[2] model withJ taken
field spin glass type models appear in a wide range of confrom the Gaussian ensembly =J;; and J;; independent

texts, they are of course the starting points for studyings,ssian random variables of zero mean and @thﬁ 1N

models of finite dimensional spin glasses but also arise as, 41so be written in the form of E) with the Wigner
models of neural networks, formulations of optimization semicircle law{7] density of eigenvalues given by
problems and simple models for protein folding.

We shall analyze a class of mean-field spin glass models (4—\2)12
ith Hamiltoni =
wi amiltonian p(N) 5 3
1
H=- > E Ji;SS, (1)  The squared interaction matrix SESIMSK) model studied
i

recently in Ref.[8] has interaction matrix)’ =J"J, where
the interaction matrix is taken from the Gaussian ensemble
described above. Her& is also of the form given by Eq.
(2). The density of eigenvalues here is given by

whereS; areN Ising spins. The interaction matriXis con-
structed via the following procedure:

—_NT
J=0 AO, (2) ()\)_ (4_)\)1/2
where O is a randomO(N) matrix chosen with the Haar P 2m\Y2
measure. The matrid is diagonal with elements indepen-
dently chosen from a distribution(\). The support op(\) In fact the SIMSK model, at positive temperatures, is equiva-
is taken to be finite and independent Méf this ensures the lent to the Hopfield mod€gl9] with N patterns. This model
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was shown[8] to have different behavior at positive and almosta random energy modéREM) at the static level. The
negative temperatures. In the positive temperature Hopfieldimplest version of the RENIL4] is given by considering a
model[10], the transition is a classical spin glass transitionsystem with microstates having independent energies. This
as in the SK model. However, at negative temperature thsituation arises by construction in the REM of Derrida where
model has a structural glass transiti@). We also note that there are 2 microstates of energiesE, each chosen inde-
the minority game, which is an economic model, is closelypendently from a suitable distribution. The REM also arises
related to the negative temperature or antiferromagnetiocvhen one considers thp—o limit of p-spin interaction
Hopfield model and the same structural glass transition hasmean-field spin glassg¢44,15. Another example is the case
been remarkefil1]. In both the SK and SIMSK models one of directed polymers on Cayley trees with random bond or
knows that the eigenvalues &fthe diagonal elements df) site disordef16]. Although in the directed polymer problem
are correlatedl7]; however, we will see here that in the ther- there are correlations between paths, these correlations are
modynamic limit this correlation seems to be unimportantweak and the resulting thermodynamics is also REM-like. In
One may also consider the more general Hopfield modethis paper we will show that this REM-like behavior is en-
with interaction matrix hanced in the ROM model on increasingabovea=1/2.
o At a more technical level, the problem of averaging over
3= E iyl ©) the O(N) disorder was solved by Marinari, Parisi, and Ritort
ij_,,,:l i [13] by transposing the results of Itzykson and Zubgr]
(based on generating function technigusem the random
wherep=aN, for a of order 1, is the number of patterns. matrix theory. For completeness we also give a simple physi-
The case whera* are Gaussian random variables of zerocal (though not rigorousrederivation of these averaging re-
mean with correlationx{x/=&; 8**/N also falls into the sults.
class of models we are considering, as an arbitrary orthogo-
nal transformatiorx*— Ox* gives an element in the same Il. AVERAGING OVER THE DISORDER
statistical ensemble. Here the density of eigenvalues of the
matrix J is [12]

We consider the partition function for a model with
Gaussian spins with a random interaction mafrixith den-

[AN—(\+1—a)?]V2 sity of eigenvalues\. denoted byp(\). The partition func-
p(N)= +(1—a)d(N) for tion at =1 is given by
2m\
1
a<1, A=0, and A e[(1-Va)?,(1+Va)?]  (6) z:f I1 dSexp{Ez Jijssj—%z 3,2). 9
i ] i
[4N—(\+1-a)?]*? y . . .
= TSN for a=1, The partition function may be explicitly evaluated, as in the
& case of thep=2 spherical spin glass model8], by passing
Ne[(Va—1)2,(1+Ja)?]. (7)  tothe basis of eigenvalues of matdx
Hence, in the case>1, the density of eigenvalues is zero at _ } > M >
the extremes of the support pf\). In the casex<1, the Z_J 1;[ dSAeXp(z ; ASy 2 EA: Si)- (10

density of eigenvalues is nonzero, and in fact diverges, at the

lower band edge but stays zero at the upper band edge. Wge Gaussian integrals are easily performed yielding

remark that the density of eigenvalues Ef). whena=1 is

exactly the same density of eigenvalues as in the SIMSK 1

model, as expected from our earlier discussion. z:(zw)N/ZH _
Another example is the random orthogonal mod@&DM) X (u—N)2

studied by Marinari, Parisi, and Ritdri3], where

(11

thus
p(M)=adA—=1)+(l—a)s(\+1). (8)

N 1

This model was extensively investigated in the case In(z)= Eln(Zw)— > > In(w—N\). (12

s . A
=1/2, and was shown to exhibit a structural glass transition.
The casea=1/2 is of particular interest because the high
temperature series expansion in this case is equivalent to th
of a frustrated mean-field model, the sine model, which has Nz 1 1
no quenched disorder. The ROM at=1/2 shows some n
rath?ar interesting behavior, the static transition temperature 9= ~32n@m- if dAp(MIn(u=0). (13
T is extremely close to the temperaturg where the an-
nealed entropy vanishes. Below the static transition temperaA/e will now repeat the same calculation gty using the
ture the energy is almost constant or equivalently the specificeplica method. One replicates the systetimes, where we
heat is nearly zero. This implies that the ROMaat 1/2 is  shall consider the limih—0:

éyeraging over the disorder we obtain
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1 i ergy on condensing near maximal eigenvalues of the matrix
"= H d§e><p< 52 Jijz SIS > 2 Slaz): J and there is no frustration. We make the ans@tz qgl
e b a e +qU, whereU,,=1 for all a, b. Making use of the fact that

(149 U2=nU, in the limitn—0, we obtain

wherea=1, ... n are replica indices. In a model where the =

interaction matrix is chosen to give an extensive free energy, _ . In(Z") E+ Eln(z - Eextr (Ge+ )

we expect that 9= M=aN 2 "2 Mem) T 3 Magq 400 ]

1 " N , q
exp 5 > Ji; 2SSt =ex STrG(Q) +nedt/, —~G(0y)—qG (qo)—ln(qo)—% . (20)
ij a

(15

The stationarity condition with respect tpyields G'(qg)
where Tr indicates the matricial trace over the Parisi order- u+ 1/gy=0, which then gives
parameter matri@abz(llN)EiSf"Slb, and the term n.e.t. de- L .
notes nonextensive terms. The idea of the calculation that 9= 2t 2IN(2m) —zexty [ 1qo—G(do) ~In(do)]- (21)
follows is to calculatey by using the replica method and then

extractG by comparing the result of this replica calculation !f On€ returns to the expression for the action in Bd), itis
with the result(13). easy to understand the result in EB1). The term in square

One has therefore, for a genefic brqcke_ts in Eq(19) clearly possesses @(n) invarian(_:e_,
which is a consequence of ti@N) invariance of the origi-
= N “ 5 nal problem before the disorder average is carried out. The
'~ 11 dSanP( STrGQ)~ 52 st ) (16)  action(19) can therefore be written in terms of the eigenval-
b he ues of the matrix 00, which by comparison with Eq21)
We impose the constraidtQ,,=3;S*S° with a Fourier rep-  Must correspond to the possible valuegigf We now equate

resentation of theS function to obtain two different calculations fog, Eq. (13) and Eq.(21), to
obtain

_ N N
Z ~J H dAabanb]i_’__! dsaexp(ETrG(Q)JrETrAQ mian[MqO_G(qO)_ln(qO)]:1+J A p(M)IN(—N).

lEAESab MZSaZ) (22
24 4 S73 a2 The function
~f af[) dA 2pd Qap€XA NS (Q,A)], 17 f(,u)=1+f drp(M)In(—N) (23

where the actiors* (Q,A) over the order paramete€and is clearly concave fou >\, Where\ is the largest
A is given by eigenvalue of the interaction matrix Hence, the right-hand

. side of Eq.(22) has the form of a Legendre transform, which

S (Q,A)=3[TrG(Q)+TrQA—=TriIn(A+ ul) can now be inverted to give the result
+nin(2m)]. (18)
G(z)=extr, ,uz—f d\p(N) In(ge—N) |—In(z)—1,

The saddle point equationtS*/JA 4,=0 yield the relation (24)

Q=(A+ul) "%, thus giving the result

— or explicitl

In(Z”)_lI ) 1 1 T G PACTEY
N2 n( 7-r)+§—2—nextrQ[,u rQ—-TrG(Q)

G(2)=zu(z)— f dAp(N) In[x(2) = N]=In(2) -1,
—Trin(Q)], (19 (29

where exty indicates that the function in the square bracketswhere .(z) is given by the solution to

is evaluated at an extremal or stationary point. For integer

this extremal value is of course the maximum; however, in [ p(M)dA

the limit n—0 it is often the minimal value that should be f w(zZ) =N\

taken. The nature of the stationary point chosen depends on

the stability analysis of the Hessian matrix at that point. ~ The concavity off («) furthermore assures the uniqueness of
We now consider what form of ansatz one should makew(z), and hence the annealed calculatianth n=1 repli-

for Q in the variational problem contained in EQ.9). The ca9g is equivalent to the quenched calculatiomith n=0

physical nature of the problem makes it clear that the ansateplicag. Hence the extremum taken in EQ4) should be a

should be replica symmetric, the system minimizes its enminimum. Consequently, we obtain the final result

(26)
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The Hopfield modekor all «, Eq. (26) yields
G(z)=min,

,uz—f dhxp(N) In(e—N)|—In(z)—1. )
27 z= ﬂ{,u,—a-f—1—[(M—a+1)2—4,u]1/2}. (34

This result can be shown to be identical to that used by

Marinari, Parisi, and Ritorf13] who transposed the results The solution to this equation turns out to be surprisingly
of Itzykson and Zubef17] for integrals over unitary matri- simple and is
ces to integrals over orthogonal matrices. We recall briefly

the prescription of Ref.13] in the form adapted to the defi- p=——t = (35)
nition of the Hamiltonian used hei¢here is a difference of z

definition by a factor of 2). In the method of R¢13] G(2)

is given by Again integrating Eq(31) gives
14(tz)—1 G(z)=—aln(1-2). (36)
6= [ Pt (29
o t The ROM.In the ROM, Eq.(26) reads
where a -«
] . 2 z= ﬁ + m (37)
¢r(z)=f Ap(N) 7——s 29
1-j(2)r Solving this yields
with j(z) given by the solution to the equation 1+[1+4z(m+2z)]¥2
m= 5 : (39
. 1 z
ZZJ(Z)j dkp(h)m- (30 .
Iz wherem=2a—1. The solution ofx should always be such

that u>A\ax; hence we take the positive root in the above

Comparison of Eq.30) with Eq. (26) shows thaty(z) equation. The subsequent integration of E{) then gives

=1/j(2). In addition, one sees from EqR9) and (30) that

W(2)=2/j(2)=zu(z). When z<1 one has the solution G(z)=1([1+4z(m+2)]¥2+ min{[ 1+ 4z(m+2) ]2
u(z)~1lz, or j(z)~z from Eg. (26). In both prescriptions
this yields(as it shouldd G(0)=0. One also has thag(0) +2z+ml—In{[1+4z(m+2)]"*+1+2mZ
=1; thus differentiating Eq(28) yields —min(m+1)—1—In(2)). (39)
1
G'(2)=u(z)— > (31)  Settingm=0 yields the symmetric cage= 1/2[13]. For this

special case, the partition function may be computed directly

which is the same equation as obtained on differentiating oupY USing theO(N) invariance{19]. . _
result Eq.(27). The equivalence of the two averaging results "€ Semisquare lawhe semisquare model is one with
is thus demonstrated. One of the advantages with the derivgigenvalues distributed uniformly betweenl and 1 and
tion of the averaging formula derived here is that it has d'enceép(A)=1/2forx e[—1,1]. In this case the Eq26) is
variational form.

Here we shall give some specific examplesGifz) for 7= Em '“_Jrl . (40)
some well-known models and others we will study in this 2 \p-1
paper. .
The Sherrington-Kirkpatrick modeThe first example to This leads 10
consider is the Sherrington-Kirkpatrick model, for which sinh(z)
function G is known by simply averaging over the indepen- G(z)=|n( ) (41
dent Gaussian elements df G(z)=z%/2. We shall show z
how to get this result from the formalism developed above.
From Eq.(26), ll. THE GENERAL CASE
1 (2 \/W w(z)— \/m A. Representations of the Saddle Point Action
= ﬂj_zdh w(z)— N\ = 2 - (32 We repeat the precedent calculation for an Ising spin
Hamiltonian of form given in Eq(1). Using the same tech-
Solving this gives nigque as the previous section, after a little algebra, one finds
1 In(Z") .
un(z)=z+ o (33 N =extig \S*™*[Q,A], (42)
which givesG(z)=z%/2 by using Eq(31). where
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1 1 where
S*[Q,A]= ETrG(,BQ)JrETr QA

1
SIQJ= 5TrG(Q) - 5TrQG! (5Q)

+In . (43

1
Trs.exp =5 > AabSaSb)
a,b

+In . (51

Trsaexp(g > [G'(ﬂQ)Jabsasb)

This is the general form used in R¢fL3]. However, as the
form of G is in general rather complicated, one may use the
variational representation of Eq27), introducing an addi- Here we can show that if one uses the density of eigenvalues

tional order parameter matri® to write for the SK, SIMSK, or Hopfield model in the above formula
_ (51), the saddle point action for the corresponding model is
In(Z") reproduced. Any effects due to correlations between the ei-
=extig , rS*[Q.AR], (44) genvalues presumably only show up as finite size correc-
tions.
where

B 1 B. The Replica Symmetric and Annealed Cases
S*[QAR]=5TrQR~ §TrJ drp(N)In(R—N) We start by computing the annealed free energy, which is

presumably the correct free energy at sufficiently high tem-

1 n 1 peratures. In the annealed case, thatis1, the free energy
— ETr In(,BQ)— §+ ETI’ QA is given by
1 In(2) 1
+1In Trsaex% _E aZb AabSaSb>} fann__T_ﬁG(ﬁ) (52

(45) and the entropy is given by
The saddle point equationS*/9Q=0 yields the relation

A=Q 1—pR, and this leads to Sunn=In(2)+ %G(B)— gG'(,B)- (53
In(Z")
N~ SXorSIQ.R], (46)  In the replica symmetri¢dRS) ansatzQ,,=(1—q)ap+4,
where § is the Kronecker symbol, and the action reads to
where ordern,
1 1 1
SQ.R]=~ ETrf drp(M)In(R—=N) = 5Trin(5Q) SQI=n&%da]=5[G(B(1-q))+BqG (B(1-q))
1 - B2q(1-)G"(B(1-
+In TrsanF(E > (BRab—[Q]a;)sasb”. pataeipia)
& « d
(47) * f . éezz’zln{z costifz\aG"(B(1-q))1}
The saddle point equations for this action yield (54)
Tre S.Sq exp{ % 2 ( BRab_[Q]abl)SaSb} and the derivative 08zd q] with respect taq is
a a,b
ch: ’ (48) 2
1 d
Trsaexr{z > (BRab—[Q];bl)Sasb} Sgi‘” - %[G"(ﬁ(l—q))—ﬁqG’"(ﬂ(l—q))J{q
and ° d
- f \/Tiﬂe‘zz’ztank?[ﬁz aG"(B(1-)]|.

The problem may also be formulated purely in terms ofThere are two replica symmetric saddle point equations:
the Parisi overlap matriQ. In this version one has

In(Z) G"(B(1-q))=BqG"(B(1—q) (56)
N extio§ Q], (50

and
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Hence, the staggered susceptibility in the direction of an ei-

q= f " 2 o PranipaGBA-a)). (57  genvaluer is
e 27

The first solution is unphysicdB], and thusq is given by szL (63)
Eq. (57). If we look for a second-order phase transition, ex- 1-BN+BG'(B)
panding neag=0, we find that a continuous nonzero solu-
tion can appear al.=1/8,, wherep. is determined by 1 64
" p=N
BEG"(Bo)=1. (58)

) ) ) ) from Eq. (31). Hence, the staggered susceptibility for the
This general equation was also derived in R&B]. Now  mayimum eigenvalua ., diverges at the critical tempera-

using Eq.(31), Eq. (58) becomes ture, as in the SK modép].
We may now classify the phase transitions in the various
f d p(N) e (59) models discussed here simply by examining the behavior of
(pe—N)2 the density of eigenvalugs(\) at its upper band edge.

(1) SK model[Eq. (3)]: y=1/2—second order.
and henceu.= \ 2, Where . is the largest eigenvalue of  (2) Hopfield >0 [Egs. (6) and (7)]: y=1/2—second

J. We thus find thaf . is given by order.
(3) Hopfield B<0, a>1 [Eq. (7)]: y=1/2—second or-
1 p(N) der.
T_C:f d)‘)\max_)\' (€0 (4) Hopfield <0, a<1 [Eq. (6)]: & function at

N max—Tirst order.
It is straightforward to see that the possibility of having a (5) SIMSK (Hopfield at a=1) B<0 [Eq. (4)]: y=
finite temperature phase transition in this Ising spin model- 1/2—first order.
depends on the existence of a finite temperature phase tran- (6) ROM [Eqg. (8)]: 6 function at\ ,o—first order.
sition in the corresponding spherical model. In this case the (7) Semisquare modely=0—first order.
critical temperatureT; of the two transitions are the same.
Equation (60) determining T, shows that if p(X)/(Nmax C. One Step Replica Symmetry Breaking
—\) is integrable over the support pf\) thenT, is finite,
if it is not integrable thenT.=0. Hence, if p(\)~(\max
—N)? nearh . thenT.=0, for y=<<0 but a finite tempera-
ture second-order phase transition is possible/fsi0. From
Eq. (59) we also see that ify>2 then the phase transition

In a variety of models such as the SK model, the Hopfield
model, or the ROM, either the RS entropy or the annealed
one is negative at low temperature. In this case, replica sym-
metry has to be broken. Indeed, the glass transition may be
can be continuous but of higher than second order. attributed to the existence of an extensive number of pure

The above results can be further verified in a more generaﬁt.ates' The comp_lexny of these pure states can be com_puted
than replica symmetric context by carrying out a LandauW'thln the foIIowmg. one step repllpa symmetry breaking
expansion. WritingQ,,= 8ap+ @ap, the lowest-order expan- (IRSB ansatz[5,21J. Q is a block d|agongl matrix, where

ap ~“ab © *"ab the blocks have sizenxm and m=1. Inside the blocks

sion aroundw =0 of Eq. (51) is Qap=(1—0q) 84t 0, then the action reduces to

SQI- 568+ 26 BLEC (B~ 11T 0P+ o) m-1 1 A
2 2 ' Sta,m]=— —G(B(1-a)+5 -G(B(1-g+qm) -5 (1
(61)
The nature of the phase transition depends on the coefficient —g+mag)+ im Joc Ee—zzlzcosﬁn( W2) |,
of Trw? in the expansion above. This coefficient only van- m —= 27
ishes atB?G”(B)=1, which agrees with the previous defi- (65)

nition of T.. If T.#0, then a second-order phase transition

occurs afl;, and the subsequent replica symmetry breakingyhere

is determined in terms of higher order énin the expansion

Eqg. (61). We note that the breaking of tl@&(n) symmetry in B

replica space should favor replica symmetry breakilg A= LG (B(1-q+ma)—G(B(1-q)l. (66
In addition if we look at the Thouless-Anderson-Palmer

(TAP) equationg20] in an external field, the linear expan- ExpandingS[q,m] aroundm=1 gives

sion in the paramagnetic phase gives the following equations

for the magnetizations; : S[q,m]=—Bfannt (M—1)V(q)+0(1-m)?). (67

mi:ﬂhiJrBZ J;;m;— BG' (B)m;. (62) T_he extremum of the effec_'uve potentdlq) at q=0 con-
i tributes to the paramagnetic valuegf ,,,,,, whereas a local

046112-6



ROLE OF THE INTERACTION MATRIX IN MEAN- . ..

minimum at nonzeraj corresponds to the entropy of pure
states. The potential is easily computed,

95[q,m]

om 68

V(g)=

m=1

1+q
5 N

1
—5[G(B(1-a)-G(B)+BaG'(B) ]+

_e—mfx dz
o

—— e ?2cosk{\/\2)In cos A 2),

T

(69
where

A=B[G"(B)—G'(B(1-q))]. (70

This is exactly the expression for the annealed complexity o

the solutions of the TAP equations found in Rgf0].

The dynamical transition occurs when the number of pure
states becomes extensive. The dynamical transition tempera-

ture Tp and the dynamical overlag, are determined from
the equation®"”(qp)=V'(qp)=0 (qp#0). The static tran-

PHYSICAL REVIEW E 67, 046112 (2003

© > Tp

1.0

.
B R

0.0 L L

0.6 0.8 1

o

FIG. 1. Various temperatures arising in the random orthogonal
fnodel as a function oé.

BZ

V'(0)="ZG"(BI[1-B*C"(B)] (75

sition occurs when the number of pure states is no longer Again, this quantity may have several possible behaviors,

extensive, so the static transition temperatlize and the
static overlapgs are determined from the equatiok§qs)

=V'(ds)=0 (gs#0).
The first derivative of the potential is

2

V'(Q)=%G"(ﬂ(l—Q))[q—F(Q)], (71)

where

I'(q)= e*“zfm \/%ezz’ztanh’-( JAz)cosi\\z2)

—o0

(72)
and the second derivative is
Bz
V"(q)= ?G”(ﬁ(l—Q))[l—F’(Q)]
:83
-5 G"BA-a)la-T(@]. (73

After some algebra, one finds fg* such thatv’(gq*)=0,

2
V'(a*)= %G”(ﬁ(l—Q*))< 1-B2G"(B(1-q*))e

[ 2 g 1 ) (7
—o \27 cosB(\\z) /"

The paramagnetic solutiaqp=0 is always a stationary point
of V(q) and the second derivative dfis

depending o3, .

(1) B.=. One sees from Eq26) that for all tempera-
tures B2G”(B)<1, and thenv”(0)>0. Hence, either the
only local minimum of the effective potential is g=0, or
there is another solution appearingTgf>0, where the sys-
tem undergoes a dynamical transition, with a nonzero dy-
namical overlagp .

(2) B.= 1T <. From Eq.(26), B>°G"(B)<1 if B<f.
and B°G"(B)=1 if B=p.. Here, the stationary poing
=0 becomes unstable a=T_, so there is no dynamical
transition belowT . (one cannot exclude a dynamical transi-
tion at Tp#0, but as expected.<Tp). We remark from
Eq. (74) that if G’ is convex, then there is no discontinuous
dynamical transition and the system undergoes a classical
spin glass transition ak.

This 1RSB calculation can be done for the random or-
thogonal model, where a discontinuous dynamical transition
is expected. The dynamical and static temperatiirg@nd
T arising in the random orthogonal model as a function of
a are shown in Fig. 1. Also shown is the temperatUipeat
which the annealed entropy disappears. It was noted by
Marinari, Parisi, and Ritort that for the ROM at=1/2T, is
very close toTk . Indeed we see that for all=1/2 this is the
case. This means that the statics of these modelsafor
>1/2 is very close to that of the REM. This analogy is fur-
ther supported by the values gfin the one step solution,
which are already very close to 1 & .

IV. NUMERICAL SIMULATIONS

In this section we describe the numerical simulations car-
ried out to test our theoretical results. We shall concentrate
on the case of the random orthogonal model at different val-
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FIG. 2. Energies per spin for the ROM with=0.6: the Monte ) ) ) _

Carlo simulations for the systems of sike= 200 (squaresand N FIG. 3. Energies per spin for the ROM with=0.8: the Monte

=30 (circles, the exact enumeration fot= 30 (long dashed ling Carlo simulations for the systems of sike=200 (squaresandN

annealedsolid line). Also shown are the calculated valuesTf = 30 (circles, the exact enumeration fot=30 (long dashed ling
(vertical dotted ling and Ty (vertical dashed line annealedsolid ling). Also shown are the calculated valuesTgf
(vertical dotted ling and T¢ (vertical dashed line In the inset is
xshown the low energy behavior of the annealed energy and the

ues ofa and the semisquare model, which are systems e ¢
energy calculated by the exact enumeration.

hibiting the structural glass transition.

The numerical generation of the interaction matridgss
carried out as follows. We take a random orthonormal basighe time spent at each temperature and the measurements
of x¥ 1<k=N of RN and construcd;; via were made during the last 10%. Also shown in Figs. 2—4 is
the calculated value df, (vertical dotted lin¢ and the value
of T (vertical dashed line We see that for the system sizes
studied here, the departure from the annealed energy and the
onset of the characteristic, almost flat energy plateau, are in
where, in the case of a continuous density of eigenvaluegood agreement with the calculated valu€eTgf.

p(\), each), is drawn independently from the distribution ~ For the system sizes & =30 spins, the energy can be
with probability densityp(\). In the case of the ROM, in calculated by exact enumeration over all the microstates. The
order to reduce sample to sample fluctuation, eigenval-  results for the energy can be compared with those of dynami-
ues +1 and N(1—«) eigenvalues—1 are randomly as-

signed to each eigenvector. As mentioned above, this hasth- _g.2 ,
form of a Hopfield mode[9] but where the patterng® are
strictly orthogonal, and not simply statistically orthogonal,
and where each patterf is weighted byx, . The construc-
tion of a statisticallyO(N) invariant basis<¥ is carried out

Jij = zk )\kxi(k)XJ(k) , (76)

| R

by choosing forx®¥ the (normalized eigenvectors of the 03 1
statistically O(N) invariant symmetric Gaussian matrik
with Kj; = oy; 1N, eacho;; being Gaussian of mean 0 and LW S0P
variance 1. PO "ot
We have carried out two types of numerical simulations. _04 |pooonon® " il

The Monte Carlo simulations on the systems of side
=200 were performed, in order to validate the high tempera-
ture predictions of the theory. Below the dynamical transition
temperaturdlp, it is impracticable to equilibrate the system
for these large system sizes; however, one may estimate th  -0.5 ' ' '

value of Tp by examining at which temperature the mea- 0 0.1 02 0.|.3 0.4 0.5 0.6
sured results differ from the annealed calculation. The results

of our calculations are compatible with these estimations. In  FiG. 4. Energies per spin for the semisquare model: the Monte
each of Figs. 2—4 is shown the dynamically measured energiarlo simulations for the systems of sike= 200 (squaresand N

per spin for a system of size 200. The corresponding cooling-30 (circles, the exact enumeration fot=30 (long dashed ling
rate, the number of samples, and the number of runs argnnealedsolid line). Also shown are the calculated valuesTof
shown in Table I. The equilibration time constituted 90% of (vertical dotted ling and T, (vertical dashed line
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TABLE |. Parameters used in different Monte Carlo simulations.

Semisquare ROMy=0.6 ROMa=0.8
N=30 N=200 N=30 N=200 N=30 N=200
Number of samples 40 40 40 40 40 40
Number of runs 200 20 200 20 200 20
Cooling rate(MCS) 5X10° 5X10° 10° 1° 2x10° 2x10°

cal simulations and the theoretical predictions. For the dy+esults of the random matrix theory. This method has the
namical simulations on the systems of si¢e 30, the cool- useful property of giving a variational form for the result.
ing rate, the number of samples, and the number of runs arf@epending on the behavior of the density of eigenvalues at
also indicated in Table I. The exact enumeration average#le band edges, we have seen that one either obtains a clas-
were taken over at least 20 samples. Also shown in Figs. gical spin glass transition or a structural glass transition. Our
—4 are the results of these simulations. We see that the réesults suggest that in the thermodynamic limit only the den-
sults of the exact enumeration, even for the small systerfiity of eigenvalues is important for the statics of these mod-
sizes used here, are in excellent agreement with the theoregls. This classification should be useful in a wide range of
ical predictions. For the system with=0.6 (Fig. 2), we see models. It was noted that the ROM with a bimodal distribu-
that the plateau in the static energy is compatible with thdion of eigenvalues behaves like a random energy model for
calculated value o but the Monte Carlo simulation with large values of, in agreement with previous studies where
N=30 is clearly out of equilibrium at temperatures below it was shown already to have very close to REM-like behav-
Tp. In Fig. 3 for «=0.8 the theoretical prediction is that ior at a=1/2.

Tk<Tp. We see that the exact enumeration result is in per- We have carried out numerical simulations on the gener-
fect agreement with the annealed energy down to energiealized form of the original ROM model, which support our
aroundTy (shown enlarged in the figure inyeThe Monte  analytical calculations. Simulating small system sizes via the
Carlo results for the systems of sike= 30 are, however, still Monte Carlo dynamics and by the exact enumeration con-
clearly out of equilibrium. In Fig. 4 are shown the results for firms the dynamical nature of the transition occurring gt

the semisquare model. We see that the dynamics and tHelrther questions arising form this study will be interesting
Kauzmann temperatures are very close; however, here tHe address. One can look at the number of metastable states
results of the Monte Carlo simulations and the exact enuln such systems to better understand the geometric reasons
meration for the systems of sisé=30 are much closer, the leading to the glassy behavip22]. Also the fact that even
dynamically measured energies are, however, still slighthysmall system sizes stay out of equilibrium on numerically

lower than the static ones measured by exact enumerationaccessible time scales and the fact that they can be studied by
exact enumeration means that one may study finite size ef-

V. CONCLUSIONS f_ects and hence a_ctivated processes on f[he dynamical transi-
tion as proposed in Ref23]. The formulation of the saddle
In this paper we have examined the statics of a class gboint action in Eq(47) also allows one to study the decom-
fully connected generalized random orthogonal models. Weosition of the Parisi overlap matri@ on the basis of eigen-
have shown how the average over BéN) disorder can be vectors of the problem, which may give a more geometric
carried out, using a simple replica method recovering thepicture of the nature of the glassy phase of these models.
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